Scheme 1 An applicable mechanism for the oscillation reaction.
Scheme 2 A mechanism for saponification of ethyl acetate.
$B$^$?!"$3$NH?1~$NB.EY<0$O
$B!!!!!!!!(Bd[R]/dt = d[OH-]/dt = -k1[R][OH-] + k2[I]
$B!!!!!!!!(Bd[I]/dt = k1[R][OH-] - k2[I] - k3[I]
$B!!!!!!!!(Bd[P]/dt = d[OEt-]/dt = k3[I]
$B$3$NH?1~$O5!9=$,4JC1$J$?$a!"87L)$J2r@O2r$rF@$k$3$H$,$G$-$k!#$7$?$,$C$F!"$3$N2r@O2r$HHf3S$9$k$3$H$K$h$j!"K\%W%m%0%i%`$K$h$k?tCM@QJ,$N@53N$5$rI>2A$9$k$3$H$,$G$-$k!#(B
Table 1 Rate constants used in calculation of hydrogen-bromine reaction (1003 K).
Forward(moles/cc. sec) | Reverse(moles/cc. sec) | |
---|---|---|
($B-5(B) ($B-6(B) ($B-7(B) |
6.26$B!_(B105 2.61$B!_(B109 1.17$B!_(B1014 |
1.56$B!_(B1015 1.39$B!_(B1013 3.31$B!_(B104 |
$B!!$^$?!"F1$8?6F0H?1~$K$*$$$F!"H?1~B.EYDj?t$rBg$-$/$7$?>l9g$N@QJ,7k2L$r(B$B?^(B2(c)$B!"(B$B?^(B2(d)$B$K<($9!#(B$B?^(B2(c)$B$O%9%-!<%`(B1$B$N(Bk10'$B$H(Bk10"$B$NB.EYDj?t$r(B$B?^(B2(a)$B5Z$S(B$B?^(B2(b)$B$N>l9g$N(B100$BG\$K$7$?>l9g$N7k2L$G$"$k!#(B$B?^(B2(d)$B$O(Bk9'$B$H(Bk9"$B$r(B100$BG\$K$7$?>l9g$N7k2L$G$"$k$,!"$3$N>l9g$O(B(b),(c)$B$HA4$/0[$J$k?6F0%W%m%U%#!<%k$rM?$($k(B!$B@QJ,4V3V$r&$(Bt=0.1$B!$(B0.01$B!$(B0.001$B$N0lDjCM$K$7$?>l9g$O@QJ,2aDx$G%*!<%P!<%U%m!<$,5/$3$j!"7W;;$O$G$-$J$+$C$?!#$7$+$7!"K\%W%m%0%i%`$rMQ$$$?>l9g$K$O!"%*!<%P!<%U%m!<$O5/$3$i$:!"B.EYDj?t$,$+$J$jBg$-$J>l9g$G$b&$(Bt$B$,E,@Z$KJQ2=$9$k$?$a@QJ,$,2DG=$G$"$k$3$H$,$o$+$k!#Hf3S$N$?$a$K!"F1$8B.EYDj?t$rMQ$$$F@QJ,4V3V&$(Bt$B$r0lDj$K$7$F@QJ,$7$?>l9g$HE,@Z$JCM$rA*Br$7$D$D@QJ,$7$?>l9g$N@QJ,$KMW$7$?;~4V$r(B$BI=(B2$B$K<($7$?!#&$(Bt$B$r0lDj$K$7$F7W;;$r9T$&>l9g!"@hDx$b$U$l$?$h$&$K!"7W;;$K@h$@$C$FBP>]$H$9$kH?1~7O$KBP$9$kE,@Z$J&$(Bt$B$NCM$rA*$V$3$H$OFq$7$/!"$$$/$D$+$N&$(Bt$B$rMQ$$$F@QJ,$7$F$_$J$1$l$P@5$7$$@QJ,7k2L$,F@$i$l$F$$$k$+$I$&$+H=CG$G$-$J$$!#$7$+$b!"$=$N7k2L$,@53N$+$I$&$+$r3N$+$a$k$?$a$K$O$$$/$D$+$N&$(Bt$B$NCM$G?t2s@QJ,$r9T$$Hf3S$7$J$1$l$P$J$i$J$$!#$=$N$?$a!"(B3$B
$B$N$O!$(B4$B!_(B10-1(s)$B$N$H$-$G$"$C$?!#$3$NH?1~7O$G$OH?1~Cf$NA4G;EY$O>o$K?eAG$H=-AG$N=iG;EY$NOB$KEy$7$$$N$G!"$3$N4X78$,@.N)$9$k$+$I$&$+$G7W;;8m:9$r8!F$$9$k$3$H$,$G$-$k!#(Bt=4$B!_(B10-1(s)$B$K$*$1$kA4G;EY$r?eAG$H=-AG$N=iG;EY$NOB$H$H$b$K(B$BI=(B3$B$K<($9!#K\%W%m%0%i%`$K$h$k@QJ,$N7k2L$O=iG;EY$N9g7W$KBP$7(B+2.5%$B$NJQF0$K<}$^$k$N$KBP$7!"(BSnow$B$,9T$C$?7W;;$G$OJQF0$O(B-7.0%$B$K$bC#$9$k$3$H$,$o$+$k!#(BSnow$B$O(BH$B$H(BBr$B$NG;EY$KBP$7$FDj>o>uBV6a;w$rE,MQ$7$F7W;;$r?J$a$F$*$j!"$3$N$?$a$K(B-7.0%$B$N8m:9$r@8$8$?$b$N$H;W$o$l$k!#K\%W%m%0%i%`$G$O?tCM@QJ,$7$F$$$k$?$a!"Dj>o>uBV6a;w$HHf3S$7$F8m:9$,>.$5$/$J$C$?$H;W$o$l$k!#(BEdelson$B$i$b%W%m%Q%s$NG.J,2rH?1~$K$D$$(B
Value of $B&$(Bt
Time(s)
0.1(cons.)
0.01(cons.)
0.001(cons.)
0.0001(cons.)
change
19
136
1314
23329
2878
4.2 $B%(%9%F%k$N$1$s2=(B
$B!!A0=R$N$h$&$K!"$3$NH?1~$K$D$$$F$O2r@O2r$rF@$k$3$H$,$G$-$k!#2r@O2r$HK\%W%m%0%i%`$K$h$k@QJ,7k2L$H$rHf3S$7$?!#7W;;$KMQ$$$?B.EYDj?t$O!"%9%-!<%`(B2$B$K<($7$?3FAGH?1~$K$D$$$F!"(Bk1=5$B!"(Bk2=10$B!"(Bk3=50$B$rMQ$$$?!#$=$N7k2L!"?tCM@QJ,$N8m:9$O:GBg$G$b(B1.5%$B$rD6$($J$$$3$H$,H=L@$7$?!#$3$N$3$H$+$i!"K\%W%m%0%i%`$K$h$k@QJ,$G$O@53N$JCM$,F@$i$l$k$3$H$,$o$+$C$?!#(B
4.3 $B?eAG!]=-AGH?1~(B
$B!!(BSnow$B$,9T$C$?7W;;$N7k2L(B[1]$B$HK\%W%m%0%i%`$K$h$j@QJ,$7$?7k2L$H$r(B$B?^(B3$B$KHf3S$7$F<($7$?!#(B1$B!_(B10-1$B!A(B1[s]$B$N4V$G$N(B[Br2]$B$H(B[H2]$B$N7W;;CM$K0c$$$,@8$8$?!#FC$KBg$-$J0c$$$,I=$l$?(B
Fig. 3 Product distribution calculated for hydrogen-bromine reaction.
$B$F(BSnow$B$N7W;;7k2L$r8!F$$7!"(BSnow$B$,0lDj$H2>Dj$7$?%i%8%+%kG;EY$,3]$B!#(B
A
B
total concentration, moles/cc
initial concentration, moles/cc
%1.86$B!_(B10-8
2.00$B!_(B10-8
-7.0%2.05$B!_(B10-8
2.00$B!_(B10-8
+2.5%
4.4 $BG;EYJQ2=$H&$(Bt$B$NJQ2=(B
$B!!K\%W%m%0%i%`$K$h$k0J>e$N@QJ,7k2L$r$_$k$H!"@.J,$NBg$-$JG;EYJQ2=$H&$(Bt$B$NJQ2=$,BP1~$7$F$$$k!#5^7c$JG;EYJQ2=$,5/$3$k@QJ,6h4V$G$O@QJ,8m:9$,Bg$-$$$?$a$K!"#2$D$N0[$J$k&$(Bt$B$NCM$rMQ$$$F@QJ,$r9T$&$H!"N>
5. $B7kO@(B
$B!!K\8&5f$G$O!$H?1~$NB.EY<0$N$?$a$N?tCM@QJ,$r!"@.J,$NG;EYJQ2=$NBg$-$5$K1~$8$FE,@Z$KA*Br$7$J$,$i@QJ,$r?J$a$k%W%m%0%i%`$r:n@.$7!"J#;($J2=3XH?1~$KE,MQ$7$?!#$=$N7k2L!$0J2<$N$3$H$,J,$+$C$?!#(B
$B!!#1!%H?1~B.EY<0$KBP$7$F@53N$J@QJ,7k2L$rF@$k$?$a$K$O!"H?1~?J9T$K4p$E$/G;EYJQ2=$NBg$-$5$K1~$8$?E,@Z$J@QJ,4V3V$rA*$V$3$H$,I,MW$G$"$k!#(B
$B!!#2!%E,@Z$J@QJ,4V3V$r7hDj$9$k$K$"$?$C$F!"#2$D$N@QJ,4V3V$rMQ$$$F@QJ,$7$?7k2L$rHf3S$9$k$3$H$K$h$j@QJ,4V3V$r9-$2$k$+!"69$a$k$+$rH=CG$9$k$3$H$,$G$-$k!#(B
$B!!#3!%K\%W%m%0%i%`$O%U%j!<%i%8%+%kO":?H?1~$K$D$$$F$b8m:9$,>/$J$$@QJ,7k2L$rM?$($k!#(B
$B!!#4!%K\%W%m%0%i%`$K$h$l$P!"7W;;;~4V$rBgI}$KC;$/$9$k$3$H$,$G$-$k!#(B
$B;29MJ88%(B
1) R. H. Snow, J. Phys. Chem., 70, 2780 (1966).
2) L. A. Farrow, D. Edelson, Int. J. Chem. Kinet., 6, 787 (1974).
3) D. Edelson , D. L. Allara, J. Amer. Inst. Chem. Eng., 19, 638 (1973).
4) R. H. Snow, R. E. Peck, C. G. von Fredersdorff, J. Amer. Inst. Chem. Eng.,
5, 304 (1959).
5) I. Matsuzaki, T. Nakajima, H. A. Liebhafsky, Faraday Symp. Chem. Soc. 9,
55-65 (1974); Chem. Lett. 1463-1466 (1974).
6) $B2rK!$K$D$$$F$O(B H. G.Hecht$BCx(B,$B!!BgLn8x0l(B,$B!!@PED=S@5Lu(B,$B!!(B"$B2=3X?t3X(B",
$B%^%0%m%&%R%k=PHG(B (1992) pp.196-201.
7) G. W. Gear, "Numerical Initial Value Problem in Ordinary Differential
Equations", Prentice Hall Chap.11 (1971).
8) R. Haswani, S. K. Gupta, A. Kumar, Polym. Eng. Sci., 35, 1231-1240
(1995).
9) L. Ni, L. Zhang, J. Ni, W. Yuan, Huagong Xuebao, 46, 562-570 (1995).
10) A. S. Dornford, R. W. Grimes, Philos. Mag. B, 72, 563-576 (1995).
11) W. C. Bray, J. Am. Chem. Soc., 43, 1262-1267 (1921).
12) L. Treindl, R. M. Noyes, J. Phys. Chem., 97, 11354-11362 (1993).
13) A. Levy, J. Phys. Chem., 62, 570 (1958).
14) E. S. Campbell, R. M. Fristrom, Chem. Rev., 58, 173 (1958).
Return