$BH?1~B.EY<0$N(BRunge-Kutta$BK!$K4p$E$/?tCM@QJ,%W%m%0%i%`(B

$B4;J(B


Return

$B#1!%=o8@(B

$B!!2f!9$NF|>o@83h$OB?$/$N2=3XH?1~$NMxMQ$K$h$C$F;Y$($i$l$F$$$k!#$=$b$=$b!"2f!9$N@8L?$=$N$b$N$,B?$/$N2=3XH?1~$K$h$C$F0];}$5$l$F$$$k!#$3$N2=3XH?1~$KBP$9$k2f!9$N6=L#$O!"$=$l$,$I$NDxEY?J$`$+!J2=3XJ?9U!K!"$I$s$JB.EY$G?J$`$+!JH?1~B.EY!K!"$=$7$F!"$I$s$J;EAH$_$G5/$3$k$+!JH?1~5!9=!K$K$"$k!#(B $B2=3XJ?9U$NLdBj$OG.NO3XE*$J7W;;$K$h$C$F2r7h$5$l$k$3$H$,B?$$!#H?1~B.EY$O$=$l$rM}O@E*$K?dDj$9$k$3$H$O$G$-$:!"Mh$NCN8+!"Nc$($PEE;RO@E*$J9M;!$r2C$($F?dDj$5$l$k$N$,0lHLE*$G$"$k!#?dDj$5$l$?H?1~5!9=$,@5$7$$$+$I$&$+$O!"DL>o$=$l$+$iF3$+$l$kB.EY<0$,r7o$,K~$?$5$l$?$K2a$.$J$$!#$7$+$7!"$=$l$KH?$9$kl9g$,A}$($F$-$F$$$k$,!"B.EYO@E*$J8!F$!"$9$J$o$A!"H?1~5!9=$+$iF3$+$l$kB.EY<0$, $B!!0lHL$K!"H?1~B.EY<0$O!"H?1~$K4XM?$9$k3F2=3Xl9g$O2r@OE*$K@QJ,$G$-$k!#$7$+$7!"?(G^H?1~$N$h$&$KH?1~5!9=$,J#;($J>l9g$O!"(B $BF@$i$l$k7k2L$O$=$l$@$1$"$$$^$$$K$J$k!#$3$N$h$&$J>l9g$K$OE,Ev$JH?1~>r7o$NA*Br$K$h$jB.EY<0$N4JC12=$,9T$o$l$k$,!J5<(B1$B $B!!$^$?!"9-$/:NMQ$5$l$F$$$kJ}K!$H$7$F!"Dj>o>uBV6a;w!J(Bsteady-state approximation$B!K$,$"$k!#$3$N6a;w$ODj>o>uBV$K$*$1$kHyNL@.J,$NG;EYJQ2=$rL5;k$9$k$b$N$G$"$k$,!"$3$l$K$h$jL$CN?t$N?t$H2r$/$Y$-HyJ,J}Dx<0$N?t$rBgI}$K8:$i$9$3$H$,$G$-!"H?1~B.EY<0$r2r@OE*$K@QJ,$9$k$3$H$,2DG=$K$J$k>l9g$bB?$$!#$7$+$7!"HyNL@.J,$NG;EY$K4^$^$l$kAjBP8m:9$OBg$-$/!"$^$?!"H?1~=i4|5Z$S=*4|$NDj>o>uBV$,@.N)$7$J$$CJ3,$K$O$3$N6a;w$O;H$($J$$!#?6F0H?1~$J$I$b!"?6F0$9$k2=3Xo>uBV6a;w$O;H$($J$$!#(B
$B!!$3$N$h$&$JDj>o>uBV6a;w$N8B3&$r9nI~$9$k$?$a!"(B Snow$B$O?tCM@QJ,K!$HDj>o>uBV6a;w$rAH$_9g$o$;$?J}K!$rDs>'$7$F$$$k(B[1]$B!#$7$+$7!"(BEdelson$B$i$O!"(BSnow$B$NDs>'$7$?J}K!$,Dj>o>uBV$N2>Dj$N$&$($K?tCM@QJ,$r9T$&8N$K@53N$J2r$,F@$i$l$J$$>l9g$,$"$k$3$H$r;XE&$7$F$$$k(B[2$B!$(B3]$B!#$3$N$h$&$K!"Dj>o>uBV6a;w$O$"$/$^$G6a;w$K$9$.$:!"$3$N$h$&$J6a;w$r9T$&$3$H$J$/@QJ,$9$kJ}$,!"$h$j@53N$J2r$rF@$k$3$H$,$G$-$k!#?tCM@QJ,K!$@$1$rMQ$$$F2r@O$r9T$C$?Nc$H$7$F!"(BSnow$B!"(B Peck$B!"(B Fredersdorff$B$N%(%?%s$N9g@.H?1~(B[4]$B$d!">>:j!"CfEg$i$,9T$C$?(BIO3-$B!"(BH+$B!"(BI2$B!$(BI-$B!"(BH2O2$B$r4^$`MO1UCf$N?6F0H?1~(B[5]$B$J$I$,$"$k!#6aG/!"%Q%=%3%s$N7`E*$J@-G=8~>e$HIa5Z$K$h$j!"HyJ,J}Dx<0$N?tCM@QJ,$,MF0W$K$J$C$?!#(B
$B!!?tCM@QJ,$K;H$o$l$kJ}K!$H$7$F$O(BEuler$BK!(B[6]$B!"(BRunge-Kutta$BK!!J(B4$B6]$B!"(BGear$BK!(B[7]$B$J$I$,$"$k!#(BEuler$BK!$O4JC1$GJXMx$J?tCM@QJ,K!$G$"$k$,!"@:EY$O$"$^$jNI$/$J$/B.EY<0$N@QJ,7W;;$K$O$[$H$s$I;H$o$l$J$$!#(BRunge-Kutta$BK!$O86M}E*$K4JC1$G$"$j$J$,$i@:EY$,9b$/:G$b$h$/;H$o$l$F$$$k!#$7$+$7!"5$Aj%i%8%+%kH?1~$N$h$&$K3FB.EYDj?t$NCM$,8_$$$KBg$-$/0[$J$kH?1~B.EY<0!J$$$o$f$k7x$$HyJ,J}Dx<0!K$,M?$($i$l$k>l9g$K$O!"@QJ,4V3V$r==J,>.$5$/$7$J$1$l$P@QJ,$G$-$J$$!#(BGear$BK!$OH?1~B.EY<0$,7x$$>l9g$K6K$a$FM-8z$G$"$j!"2DJQ;~4V%9%F%C%W$N;HMQ$K$h$jJ#;($JH?1~7O$N%7%_%e%l!<%7%g%s$K9-$/MxMQ$5$l$F$$$k(B[2, 3, 8, 9, 10]$B!#$7$+$7!"86M}$,Fq$7$$>e$KJ#;($J@QJ,7W;;$r9T$o$J$1$l$P$J$i$:!"Bg7?%3%s%T%e!<%?$rMQ$$$F7W;;$9$k>l9g$K$O8zN(E*$G$"$k$,!"%Q%=%3%s$G $B!!(BEuler$BK!$d(BRunge-Kutta$BK!$K$h$kH?1~B.EY<0$N?tCM@QJ,$G$O!"H?1~3+;O;~$+$i=*$o$j$^$GF1$8@QJ,4V3VCM$rMQ$$$k$?$a!"5^7c$JG;EYJQ2=$,@8$:$k$H$3$m$G$+$J$j$N8m:9$r@8$8!"$=$N$?$a7W;;ITG=$K$J$C$?$j$7$F$$$?!#$=$b$=$b7x$$HyJ,J}Dx<0$N2r$N8m:9$,Bg$-$$$N$O!"$3$NG;EYJQ2=$,$+$J$j5^7c$J$?$a$G$"$k!#$=$3$G!"K\8&5f$G$OG;EYJQ2=$,Bg$-$$;~$K$O@QJ,4V3V$r>.$5$/$7!">.$5$$$H$-$OBg$-$/$9$k$h$&$J $B!!$J$*!";HMQ$7$?(BOS($B%*%Z%l!<%7%g%s!&%7%9%F%`(B)$B$O(BMS-DOS Ver5.0$B!"%W%m%0%i%`8@8l$O%^%$%/%m%=%U%H$N(BQuick BASIC Version 4.5$B!" 2.$B7W;;%W%m%0%i%`(B $B!!2=3XH?1~$KH<$&3F@.J,G;EY$N;~4VJQ2=$O!"H?1~B.EY<0$H8F$P$l$kO"N)HyJ,J}Dx<0$r!"=iG;EY$r=i4|CM$H$7$F@QJ,$9$k$3$H$K$h$jF@$k$3$H$,$G$-$k!#:#2s!"H?1~B.EY<0$r9-$/MQ$$$i$l$F$$$k(B Runge-Kutta$BK!(B[6]$B$K$h$j?tCM@QJ,$9$k%W%m%0%i%`$r:n@.$7$?!#(B
$B!!?tCM@QJ,$N8m:9$O@QJ,4V3V!J0J2.$5$/$7$J$1$l$P$J$i$J$$!#;v.$5$J&$(Bt$B$rMQ$$$J$$>l9g$K$O8m:9$,N_@Q$7$F4V0c$C$?7k2L$K;j$k$3$H$,;XE&$5$l$F$$$k(B[2]$B!#$7$+$7!"&$(Bt$B$r>.$5$/$9$k$H!"7+$jJV$77W;;$N2s?t$,H?HfNcE*$KA}2C$7$F7W;;;~4V$,D9$/$J$k$H$H$b$K7W;;$N4]$a8m:9$,N_@Q$7!">l9g$K$h$C$F$O@53N$J7k2L$,F@$i$l$J$$$3$H$b$"$k!#$=$l$f$(!"@QJ,8m:9$r>.$5$/M^$($k$?$a$K$O!"3F@.J,$NG;EY$N8m:9$r$_$J$,$i&$(Bt$B$NCM$rE,@Z$KA*Br$9$k$3$H$,K>$^$7$$!#$9$J$o$A!"G;EYJQ2=$,4K$d$+$J$H$-$K$O@QJ,8m:9$,>.$5$$$N$GBg$-$$&$(Bt$B$NCM$r:NMQ$7$F@QJ,$rB.$d$+$K?J$a!"G;EYJQ2=$,7c$7$$$H$-$K$O>.$5$J&$(Bt$B$NCM$r:NMQ$7$F@QJ,8m:9$,Bg$-$/$J$i$J$$$h$&$K$9$kI,MW$,$"$k!#(B
$B!!$3$l$r$l$N6h4V$r$=$N6h4V$K:GE,$N&$(Bt$B$rMQ$$$F@QJ,$9$k$3$H$K$7!":GE,$N&$(Bt$B$r7h$a$k$?$a$N$B?^(B1$B$N%U%m!<%A%c!<%H$K<($7$?!#(B
$B!!$9$J$o$A!";O$a$K4{DjCM$H$7$FM?$($i$l$?&$(Bt$B5Z$S$=$N(B1/10$B$N@QJ,4V3VCM$G$=$l$>$l(B2$B2s$*$h$S(B20$B2s@QJ,7W;;$r9T$$!"@QJ,7k2L$N:9$N@dBPCM$rH?1~$K4^$^$l$kA42=3Xl9g$K$O!"@QJ,4V3V$r&$(Bt$B$N(B1/10$B5Z$S(B1/100$B$H$7$F$=$l$>$l(B2$B2s5Z$S(B20$B2s@QJ,7W;;$r9T$&!#6qBNE*$K$O!"$$$^&$(Bt=0.1$B$r@QJ,4V3V$H$7$F:NMQ$9$k$+$I$&$+$rH=Dj$9$k$H$-!"@QJ,4V3V(B0.1$B$G(B2$B2s!$(B0.01$B$G(B20$B2s@QJ,7W;;$7$FF@$i$l$?CM$r!"$=$l$>$l(BC$B!$(BC'$B$H$9$k!#(B $B$3$N$H$-!"&$(Bt=0.1$B$N:NMQ$N2DH]$O!"(BC'$B$N(B0.1%$B$rH=Dj5,=`$H$7$F $B!!!C(BC-C'$B!C(B< C'$B!_(B0.001 $B$N$H$-!"&$(Bt=1$B$GF1$87W;;$r9T$C$F$3$N>r7o$,@.N)$7$J$$$3$H$r3NG'$7$?$N$A!"@QJ,4V3V&$(Bt=0.1$B$r:NMQ$9$k!#(B
$B!!!C(BC-C'$B!C(B> C'$B!_(B0.001 $B$N$H$-!"&$(Bt=0.1$B$rITE,Ev$HH=Dj$7!"$=$N(B1/10$B$N4V3V$N&$(Bt=0.01$B$N:NMQ$N2DH]$r8!F$$9$k $B!!$3$N$h$&$K$7$F!"2=3Xl9g$O!"@QJ,4V3V$r(B10$BG\$K$7!"!C(BC-C'$B!C(B> C'$B!_(B0.001 $B$H$J$k2=3X.$5$$J}$N@QJ,4V3V$rMQ$$$F$3$N6h4V$N@QJ,$r9T$&!#(B
$B!!$J$*!$(B $B:#2sBP>]$H$7$?(B3$B
Fig. 1 Flow chart of main program. D=$B!C(BC-C'$B!C(B-0.001C'

3. $B?tCM7W;;$NBP>]$H$7$?H?1~(B

$B!!K\%W%m%0%i%`$NM-8z@-$N8!F$$N$?$a$K!" 3.1 IO3-$B!$(BH+$B!$(BI2$B!$(BI-$B!$(BH2O2$B$r4^$`MO1U$N?6F0H?1~(B $B!!A4H?1~$O 2HIO3 $B!\(B 5H2O2 $B"*(B I2 $B!\(B 6H2O $B!\(B 5O2
$B!!(B1921$BG/!"(BBray[11]$B$K$h$jH/8+$5$l$F0JMh!"8=:_$^$G$K(B50$B$rD6$($kMM!9$J8&5fJs9p$,$J$5$l$F$$$k!#$7$+$7!"(B $B$=$N5!9=$O3NN)$5$l$k$K;j$C$F$$$J$$!#:G6a$G$O!"(BL. Treindl$B!"(B R.M. Noyes$B$,MO1U$X$N;@AG$NMO2r$r9MN8$7$??7$7$$5!9=$rDs=P$7$F$$$k(B[12]$B!#$3$3$G$O!"(B Runge-Kutta$BK!$K$h$k?tCM@QJ,$K4p$E$$$F8!F$$5$l$?>>:j$i$N(B[5]$BH?1~5!9=$KK\J}K!$rE,MQ$7$?!#?6F0H?1~$G$O2=9gJ*$NG;EY$N4K$d$+$JJQ2=$H5^7c$JJQ2=$,7+$jJV$75/$3$j!"?tCM@QJ,%W%m%0%i%`$N%F%9%H$KE,$7$F$$$k!#(B
$B>>:j$i$,Ds0F$9$k$3$NH?1~$N5!9=$O
$BH`$i$,Ds0F$9$k$3$NH?1~$N4pK\E*$J?6F05!9=$r%9%-!<%`(B1$B$K<($9!#(B


Scheme 1 An applicable mechanism for the oscillation reaction.

3.2 $B%(%9%F%k$N$1$s2=(B

$B!!A4H?1~$O?];@%(%A%k$rNc$K$H$k$H $B!!!!!!!!(BCH3COOC2H5 + NaOH $B"*(B CH3COONa + C2H5OH
$BH?1~5!9=$O%9%-!<%`(B2$B$N$h$&$K<($5$l$k!#(B


Scheme 2 A mechanism for saponification of ethyl acetate.

$B$^$?!"$3$NH?1~$NB.EY<0$O $B!!!!!!!!(Bd[R]/dt = d[OH-]/dt = -k1[R][OH-] + k2[I]
$B!!!!!!!!(Bd[I]/dt = k1[R][OH-] - k2[I] - k3[I]
$B!!!!!!!!(Bd[P]/dt = d[OEt-]/dt = k3[I]
$B$3$NH?1~$O5!9=$,4JC1$J$?$a!"87L)$J2r@O2r$rF@$k$3$H$,$G$-$k!#$7$?$,$C$F!"$3$N2r@O2r$HHf3S$9$k$3$H$K$h$j!"K\%W%m%0%i%`$K$h$k?tCM@QJ,$N@53N$5$rI>2A$9$k$3$H$,$G$-$k!#(B

3.3 $B?eAG!]=-AGH?1~(B

$B!!(BSnow$B$OH`$i$NJ}K!$,@53N$G$"$k$+$I$&$+$r3N$+$a$k$?$a$K!"6qBNE*Nc$H$7$F?eAG!]=-AGH?1~$N7W;;$r9T$C$F$$$k(B[1]$B!#H?1~$O $B!!!!!!!!(BBr2 + H2 $B"*(B 2HBr
$B$3$NH?1~$O0J2<$N$h$&$K5/$3$k!#(B
$B!!!!!!!!(BBr2 + X = 2Br + X (I)
$B!!!!!!!!(BBr + H2 = H + HBr (II)
$B!!!!!!!!(BH + Br2 = Br + HBr (III)
$B!!$3$3$G(BX$B$OBh;0J*2$B$,;H$o$l$F$$$k!#?tCM@QJ,$KEv$?$C$F$O(BSnow$B$HF1$8$/(BBr2$B!$(BH2$B$N=iG;EY$r(B1.0$B!_(B10-8mol cm-3$B$H$7$?!#H?1~(B(I)$B!A(B(III)$B$NB.EYDj?t$O!"(BSnow$B$N7W;;$K$J$i$$!"(BLevy[13]$B$NN.DL<0H?1~14] $B$,7hDj$7$?(B$BI=(B1$B$NCM$r;HMQ$7$?!#(B

Table 1 Rate constants used in calculation of hydrogen-bromine reaction (1003 K).
Forward(moles/cc. sec) Reverse(moles/cc. sec)
($B-5(B)
($B-6(B)
($B-7(B)
6.26$B!_(B105
2.61$B!_(B109
1.17$B!_(B1014
1.56$B!_(B1015
1.39$B!_(B1013
3.31$B!_(B104

4. $B?tCM@QJ,7k2L5Z$S9M;!(B

4.1 IO3-$B!$(BH+$B!$(BI2$B!$(BI-$B!$(BH2O2$B$r4^$`MO1U$K$*$1$k?6F0H?1~(B

$B!!@QJ,4V3V&$(Bt$B$r0lDj$KJ]$C$F@QJ,$7$?>l9g$N(B[HIO2]$B$N;~4VJQ2=$r(B$B?^(B2(a)$B$K<($9!#$3$3$G$O!"&$(Bt=0.1$B!"(B0.01$B!"(B0.001$B!"(B0.0001$B$N(B4$B2$B$N@8@.B.EY$r(Bv1$B$H$7!"B.EYDj?t$K$O(Bk1=5$B!"(Bk2'=2$B!"(Bk4=10$B!"(Bk16=4$B!"(Bk7=5$B!"(Bk8=5$B!"(Bk9'=2$B!"(Bk9"=0.05$B!"(Bk10'=4$B!"(Bk10"=4 (v1/k1/(mol l-1 min-1))[5]$B$rMQ$$$?!#&$(Bt=0.1$B$N>l9g$OB>$NCM$N>l9g$H0[$J$j!"(B[HIO2]$B$N?6F08=>]$O8+$i$l$J$$!#@QJ,4V3V$NA*Br$K$h$C$FA4$/0[$J$k7k2L$,F@$i$l$k>l9g$N$"$k$3$H$,$o$+$k!#(B
$B!!(B$B?^(B2(b)$B$KK\%W%m%0%i%`$K$h$k7W;;7k2L$r<($9!#B.EYDj?t$K$O(B$B?^(B2(a)$B$N>l9g$HF1$8CM$r!"$^$?!"&$(Bt$B$N=i4|CM$K$O(B0.1$B$rM?$($?!#F1$8?^$K!"A*Br$5$l$?@QJ,4V3V$NBP?tCM$b<($7$?!#$3$N7k2L!"&$(Bt$B$N=i4|CM$,(B$B?^(B2(a)$B$HF1$8(B0.1$B$G$b!"$=$N8e$N&$(Bt$B$NJQ2=$O(B0.01$B!$(B0.001$B!$(B0.0001$B$HF1$8$K$J$j!"$^$?$=$NCM$O5^7c$JG;EYJQ2=$,@8$:$kItJ,$G$O>.$5$/A*$P$l$k$3$H$,J,$+$k!#$3$N$3$H$h$j!"G;EYJQ2=$K1~$8$F&$(Bt$B$rJQ2=$5$;$kK\
Fig. 2 The time courses of [HIO2]
(a)$B&$(Bt=0.1,0.01,0.001,0.0001;(b) $B&$(Bt=change;(c) k10'=400,k10"=400; (d) k9'=200,k9"=5.

$B!!$^$?!"F1$8?6F0H?1~$K$*$$$F!"H?1~B.EYDj?t$rBg$-$/$7$?>l9g$N@QJ,7k2L$r(B$B?^(B2(c)$B!"(B$B?^(B2(d)$B$K<($9!#(B$B?^(B2(c)$B$O%9%-!<%`(B1$B$N(Bk10'$B$H(Bk10"$B$NB.EYDj?t$r(B$B?^(B2(a)$B5Z$S(B$B?^(B2(b)$B$N>l9g$N(B100$BG\$K$7$?>l9g$N7k2L$G$"$k!#(B$B?^(B2(d)$B$O(Bk9'$B$H(Bk9"$B$r(B100$BG\$K$7$?>l9g$N7k2L$G$"$k$,!"$3$N>l9g$O(B(b),(c)$B$HA4$/0[$J$k?6F0%W%m%U%#!<%k$rM?$($k(B!$B@QJ,4V3V$r&$(Bt=0.1$B!$(B0.01$B!$(B0.001$B$N0lDjCM$K$7$?>l9g$O@QJ,2aDx$G%*!<%P!<%U%m!<$,5/$3$j!"7W;;$O$G$-$J$+$C$?!#$7$+$7!"K\%W%m%0%i%`$rMQ$$$?>l9g$K$O!"%*!<%P!<%U%m!<$O5/$3$i$:!"B.EYDj?t$,$+$J$jBg$-$J>l9g$G$b&$(Bt$B$,E,@Z$KJQ2=$9$k$?$a@QJ,$,2DG=$G$"$k$3$H$,$o$+$k!#Hf3S$N$?$a$K!"F1$8B.EYDj?t$rMQ$$$F@QJ,4V3V&$(Bt$B$r0lDj$K$7$F@QJ,$7$?>l9g$HE,@Z$JCM$rA*Br$7$D$D@QJ,$7$?>l9g$N@QJ,$KMW$7$?;~4V$r(B$BI=(B2$B$K<($7$?!#&$(Bt$B$r0lDj$K$7$F7W;;$r9T$&>l9g!"@hDx$b$U$l$?$h$&$K!"7W;;$K@h$@$C$FBP>]$H$9$kH?1~7O$KBP$9$kE,@Z$J&$(Bt$B$NCM$rA*$V$3$H$OFq$7$/!"$$$/$D$+$N&$(Bt$B$rMQ$$$F@QJ,$7$F$_$J$1$l$P@5$7$$@QJ,7k2L$,F@$i$l$F$$$k$+$I$&$+H=CG$G$-$J$$!#$7$+$b!"$=$N7k2L$,@53N$+$I$&$+$r3N$+$a$k$?$a$K$O$$$/$D$+$N&$(Bt$B$NCM$G?t2s@QJ,$r9T$$Hf3S$7$J$1$l$P$J$i$J$$!#$=$N$?$a!"(B3$Bl9g!J&$(Bt=0.01$B!"(B0.001$B!"(B0.0001$B!K!"&$(Bt$B$rA*Br$7$J$,$i(B1$B2s7W;;$r9T$C$?>l9g$NLs(B8.6$BG\$N7W;;;~4V$,I,MW$G$"$k$3$H$,$o$+$k!#(B

Table 2 Time for calculating.
Value of $B&$(Bt Time(s)
0.1(cons.)
0.01(cons.)
0.001(cons.)
0.0001(cons.)
change
19
136
1314
23329
2878

4.2 $B%(%9%F%k$N$1$s2=(B

$B!!A0=R$N$h$&$K!"$3$NH?1~$K$D$$$F$O2r@O2r$rF@$k$3$H$,$G$-$k!#2r@O2r$HK\%W%m%0%i%`$K$h$k@QJ,7k2L$H$rHf3S$7$?!#7W;;$KMQ$$$?B.EYDj?t$O!"%9%-!<%`(B2$B$K<($7$?3FAGH?1~$K$D$$$F!"(Bk1=5$B!"(Bk2=10$B!"(Bk3=50$B$rMQ$$$?!#$=$N7k2L!"?tCM@QJ,$N8m:9$O:GBg$G$b(B1.5%$B$rD6$($J$$$3$H$,H=L@$7$?!#$3$N$3$H$+$i!"K\%W%m%0%i%`$K$h$k@QJ,$G$O@53N$JCM$,F@$i$l$k$3$H$,$o$+$C$?!#(B

4.3 $B?eAG!]=-AGH?1~(B

$B!!(BSnow$B$,9T$C$?7W;;$N7k2L(B[1]$B$HK\%W%m%0%i%`$K$h$j@QJ,$7$?7k2L$H$r(B$B?^(B3$B$KHf3S$7$F<($7$?!#(B1$B!_(B10-1$B!A(B1[s]$B$N4V$G$N(B[Br2]$B$H(B[H2]$B$N7W;;CM$K0c$$$,@8$8$?!#FC$KBg$-$J0c$$$,I=$l$?(B


Fig. 3 Product distribution calculated for hydrogen-bromine reaction.

$B$N$O!$(B4$B!_(B10-1(s)$B$N$H$-$G$"$C$?!#$3$NH?1~7O$G$OH?1~Cf$NA4G;EY$O>o$K?eAG$H=-AG$N=iG;EY$NOB$KEy$7$$$N$G!"$3$N4X78$,@.N)$9$k$+$I$&$+$G7W;;8m:9$r8!F$$9$k$3$H$,$G$-$k!#(Bt=4$B!_(B10-1(s)$B$K$*$1$kA4G;EY$r?eAG$H=-AG$N=iG;EY$NOB$H$H$b$K(B$BI=(B3$B$K<($9!#K\%W%m%0%i%`$K$h$k@QJ,$N7k2L$O=iG;EY$N9g7W$KBP$7(B+2.5%$B$NJQF0$K<}$^$k$N$KBP$7!"(BSnow$B$,9T$C$?7W;;$G$OJQF0$O(B-7.0%$B$K$bC#$9$k$3$H$,$o$+$k!#(BSnow$B$O(BH$B$H(BBr$B$NG;EY$KBP$7$FDj>o>uBV6a;w$rE,MQ$7$F7W;;$r?J$a$F$*$j!"$3$N$?$a$K(B-7.0%$B$N8m:9$r@8$8$?$b$N$H;W$o$l$k!#K\%W%m%0%i%`$G$O?tCM@QJ,$7$F$$$k$?$a!"Dj>o>uBV6a;w$HHf3S$7$F8m:9$,>.$5$/$J$C$?$H;W$o$l$k!#(BEdelson$B$i$b%W%m%Q%s$NG.J,2rH?1~$K$D$$(B

Table 3 An error of calculation. A:Model and calculation of Snow;B:Model of Snow$B!$(Bcalculation of Shinohara et al.;Times$B!$(Bs 4$B!_(B10-1.
A B
total concentration, moles/cc
initial concentration, moles/cc
%
1.86$B!_(B10-8
2.00$B!_(B10-8
-7.0%
2.05$B!_(B10-8
2.00$B!_(B10-8
+2.5%
$B$F(BSnow$B$N7W;;7k2L$r8!F$$7!"(BSnow$B$,0lDj$H2>Dj$7$?%i%8%+%kG;EY$,3]$B!#(B

4.4 $BG;EYJQ2=$H&$(Bt$B$NJQ2=(B

$B!!K\%W%m%0%i%`$K$h$k0J>e$N@QJ,7k2L$r$_$k$H!"@.J,$NBg$-$JG;EYJQ2=$H&$(Bt$B$NJQ2=$,BP1~$7$F$$$k!#5^7c$JG;EYJQ2=$,5/$3$k@QJ,6h4V$G$O@QJ,8m:9$,Bg$-$$$?$a$K!"#2$D$N0[$J$k&$(Bt$B$NCM$rMQ$$$F@QJ,$r9T$&$H!"N>.$5$/$J$k$^$G&$(Bt$B$r>.$5$/$9$k$3$H$K$h$j!"&$(Bt$B$NCM$K0MB8$7$J$$8m:9$N>.$5$J@QJ,$,2DG=$K$J$k!#E,@Z$J&$(Bt$B$NA*Br$O!"@QJ,6h4VKh$K:G=i$K?tDL$j$N&$(Bt$B$K$h$k@QJ,$rHf3S$9$k$3$H$G$=$N@QJ,6h4V$NG;EYJQ2=$KE,$7$?&$(Bt$B$r7hDj$G$-$k!#$^$?!"$3$N7hDj$KMQ$$$kH=Dj5,=`$=$N$b$N$b!"3F!9$NH?1~$NB.EY<0$N@QJ,$K$I$NDxEY$N@:EY$,I,MW$G$"$k$+$K$h$j!"A*$V$3$H$b2DG=$G$"$k!#(B

5. $B7kO@(B

$B!!K\8&5f$G$O!$H?1~$NB.EY<0$N$?$a$N?tCM@QJ,$r!"@.J,$NG;EYJQ2=$NBg$-$5$K1~$8$FE,@Z$KA*Br$7$J$,$i@QJ,$r?J$a$k%W%m%0%i%`$r:n@.$7!"J#;($J2=3XH?1~$KE,MQ$7$?!#$=$N7k2L!$0J2<$N$3$H$,J,$+$C$?!#(B
$B!!#1!%H?1~B.EY<0$KBP$7$F@53N$J@QJ,7k2L$rF@$k$?$a$K$O!"H?1~?J9T$K4p$E$/G;EYJQ2=$NBg$-$5$K1~$8$?E,@Z$J@QJ,4V3V$rA*$V$3$H$,I,MW$G$"$k!#(B
$B!!#2!%E,@Z$J@QJ,4V3V$r7hDj$9$k$K$"$?$C$F!"#2$D$N@QJ,4V3V$rMQ$$$F@QJ,$7$?7k2L$rHf3S$9$k$3$H$K$h$j@QJ,4V3V$r9-$2$k$+!"69$a$k$+$rH=CG$9$k$3$H$,$G$-$k!#(B
$B!!#3!%K\%W%m%0%i%`$O%U%j!<%i%8%+%kO":?H?1~$K$D$$$F$b8m:9$,>/$J$$@QJ,7k2L$rM?$($k!#(B
$B!!#4!%K\%W%m%0%i%`$K$h$l$P!"7W;;;~4V$rBgI}$KC;$/$9$k$3$H$,$G$-$k!#(B

$B;29MJ88%(B

1) R. H. Snow, J. Phys. Chem., 70, 2780 (1966).
2) L. A. Farrow, D. Edelson, Int. J. Chem. Kinet., 6, 787 (1974).
3) D. Edelson , D. L. Allara, J. Amer. Inst. Chem. Eng., 19, 638 (1973).
4) R. H. Snow, R. E. Peck, C. G. von Fredersdorff, J. Amer. Inst. Chem. Eng., 5, 304 (1959).
5) I. Matsuzaki, T. Nakajima, H. A. Liebhafsky, Faraday Symp. Chem. Soc. 9, 55-65 (1974); Chem. Lett. 1463-1466 (1974).
6) $B2rK!$K$D$$$F$O(B H. G.Hecht$BCx(B,$B!!BgLn8x0l(B,$B!!@PED=S@5Lu(B,$B!!(B"$B2=3X?t3X(B", $B%^%0%m%&%R%k=PHG(B (1992) pp.196-201.
7) G. W. Gear, "Numerical Initial Value Problem in Ordinary Differential Equations", Prentice Hall Chap.11 (1971).
8) R. Haswani, S. K. Gupta, A. Kumar, Polym. Eng. Sci., 35, 1231-1240 (1995).
9) L. Ni, L. Zhang, J. Ni, W. Yuan, Huagong Xuebao, 46, 562-570 (1995).
10) A. S. Dornford, R. W. Grimes, Philos. Mag. B, 72, 563-576 (1995).
11) W. C. Bray, J. Am. Chem. Soc., 43, 1262-1267 (1921).
12) L. Treindl, R. M. Noyes, J. Phys. Chem., 97, 11354-11362 (1993).
13) A. Levy, J. Phys. Chem., 62, 570 (1958).
14) E. S. Campbell, R. M. Fristrom, Chem. Rev., 58, 173 (1958).

Return