Ex$B&K!JNe5/GHD9!K(B | $B#3#0#5#n#m(B |
---|---|
Em$B&K!J7V8wGHD9!K(B | $B#3#3#0!A#5#2#0#n#m(B |
$B#P#M#T!!#G#a#i#n(B | Medium |
$BNe5/%P%s%II}(B | $B#1#0#n#m(B |
$B7V8wB&%P%s%II}(B | $B#1#0#n#m(B |
$B%G!<%?$N$B#1(B.$B#0#n#m(B |
|
$B!!D4@=$7$?;nNAMO1U$N7V8w%9%Z%/%H%k$NB,Dj$K$O%9%Z%/%H%kJd@5$r$7$?F|K\J,8w9)6H
$B-7!%#4(B $B%H%l!<%K%s%0%;%C%H(B
$B!!-7!%#2$GD4@=$7$?#2#9
No. | Training Set |
Number$B!!(Bof Samples |
Interval (nm) |
Independent Variables |
Dependent Variables |
---|---|---|---|---|---|
1 | D1 | 29 | 1 | $B!!(B191 | 5 |
2 | D2 | 29 | 2 | $B!!(B96 | 5 |
3 | D4 | 29 | 4 | $B!!(B48 | 5 |
4 | D8 | 29 | 8 | $B!!(B24 | 5 |
5 | D20 | 29 | 20 | $B!!(B10 | 5 |
6 | D30 | 29 | 30 | $B!!(B7 | 5 |
Fig.1 Fluorescence spectra of PAHs.
(1) B[a]p:10-1$B&L(Bgcm-3; (2) Pery:10-1$B&L(Bgcm-3; (3) Fluo:10-1$B&L(Bgcm-3;
(4) Py:10-1$B&L(Bgcm-3; (5) Chry:10-1$B&L(Bgcm-3;(6) B[a]p:9$B!_(B10-2$B&L(Bgcm-3,
Pery:10-2$B&L(Bgcm-3, Fluo:9$B!_(B10-2$B&L(Bgcm-3,Py:4$B!_(B
10-2$B&L(Bgcm-3,Chry:7$B!_(B10-2$B&L(Bgcm-3; Solvent:
n-Hexane; Ex$B&K(B=305nm,Em$B&K(B=330$B!A(B520nm.
Fig.2 Relationship between and the
sample number of training set.
(1):D1,(2):D2,(3):D4,(4)D30
$BBg$-$9$.$k%H%l!<%K%s%0%;%C%H$OKDBg$J7W;;$K$h$k8m:9$N=8@Q$,M=B,@:EY$K1F6A$9$k$3$H$b9MN8$KF~$l$J$1$l$P$J$i$J$$!#$=$3$G(BTable 2$B$NA4$F$N%H%l!<%K%s%0%;%C%H$rMQ$$$F8!NL%b%G%k$KMQ$$$i$l$k;nNA$N?t$,#S#E#C$H#S#E#C#V$K$*$h$\$91F6A$rD4$Y$?!#(BFig.2$B$*$h$S(BFig.3$B$K7k2L$N0lIt$r<($7$?!#2#<4$O%H%l!<%K%s%0%;%C%H$r9=@.$9$k$?$a$KMQ$$$?;nNAMO1U$N?t$G$"$k!#=D<4$O%H%l!<%K%s%0%;%C%H$rMQ$$$F#5
$B;w$?798~$r<($9$,#D#3#0$N>l9g!"9b$$#S#E#CCM$r<($7$F$$$k!#$3$l$O#5
$B$k#D#4$N(B$B$*$h$S(B$B$G$"$k!#$^$?(B(3)$B$*$h$S(B(4)$B$O$=$l$>$l#S#E#C$*$h$S#S#E#C#V$KBP1~$9$k8!NL%b%G%k$K$h$k(B$B$r<($7$F$$$k!#7k2L$O(B$B$H#S#E#C#V$K$h$k8!NL%b%G%k$K$h$k(B(SECV) $B$,8!F$$7$?%H%l!<%K%s%0%;%C%H$N;nNA?t$NHO0O$G6K$a$F$h$/;w$?798~$r<($7!"#S#E#C$N>l9g$HHf3S$7$F$b#S#E#C#V$NM=B,@-G=$,9b$$$3$H$r<($7$F$$$k!#$3$l$O8!F$$7$?#D#1!"#D#2!"#D#8$K$D$$$F$b$[$\F1MM$N798~$G$"$C$?!#(B
Table 3 Simultaneous five components analysis of PAHs by means of PLS$B!!(B
Fig.3 Relationship between and
the sample number of training set.
(1):D1,(2):D2,(3):D4,(4):D30
$B-8!%#3!!8!NL%b%G%k(B
$B!!-8!%#2$N8!F$$G#D#1!A#D#8$N%H%l!<%K%s%0%;%C%H$rMQ$$$F9=C[$5$l$k8!NL%b%G%k$O#S#E#C$*$h$S#S#E#C#V$N2?$l$N>r7o$K$*$$$F$b%H%l!<%K%s%0%;%C%H$KMQ$$$i$l$k;nNA?t$,#1#20J>e$GF1DxEY$NM=B,@-G=$r;}$D$3$H$,M=A[$5$l$k$,#S#E#C$*$h$S#S#E#C#V4V$NM=B,@-G=$NHf3S$O$G$-$J$+$C$?!#$=$3$G(BTable 2 $B$N%H%l!<%K%s%0%;%C%H$G#S#E#C$*$h$S#S#E#C#V$N8!NL%b%G%k$N9=C[$KMQ$$$i$l$J$+$C$?#48D$N%G!<%?$rA*$S!"#5
Fig.4 Comparison of calibration model.
Trainingset:D4,(1):,(2):(SEC), (3): ,(4): (SECV)
$B-8!%#4!!M=B,@-G=(B
$B!!9g@.$7$?;nNAMO1U$NFb!"8!NL%b%G%k$KMQ$$$J$+$C$?#4;nNAMO1U$h$jG;EY9`$r=|$$$?%G!<%?$K-8!%#3$G9=C[$7$?#S#E#C#V$N>r7o$K$h$k8!NL%b%G%k$rE,MQ$7!"M=B,@-G=$r8!F$$7$?!#7k2L$O#D#1!A#D#4$K$D$$$F!"%b%G%k$K;HMQ$7$?;nNA?t$,#1#2!A#2#0$G$OF1DxEY$NNI9%$JM=B,@-G=$r<($7!";nNA?t$NA}2C$K$h$k1F6A$O8+$i$l$J$+$C$?!#(BTable 3 $B$O%H%l!<%K%s%0%;%C%H#D#4!"%5%s%W%k?t#1#4$N8!NL%b%G%k!J#L#v#M#1#4#D#4!K$rMQ$$$?>l9g$NM=B,CM$*$h$S
Average SEP of five components:0.175($B!_(B10-2$B&L-Q(B-3$B!K(B; Model(LvM14D4)
Sample no.
B[a]p
Pery
Fluo
Py
Chry
1
Actual conc.
PLS, (10-2$B&L-Q(B-3) 4.00
3.97 7.00
6.82 7.00
6.80 10.00
9.74 10.00
9.72
2
Actual conc
PLS, (10-2$B&L-Q(B-3) 2.00
1.98 10.00
10.24 6.00
6.13 5.00
5.02 4.00
3.87
3
Actual conc.
PLS, (10-2$B&L-Q(B-3) 8.00
8.20 8.00
8.22 8.00
8.14 6.00
6.00 3.00
2.92
4
Actual conc.
PLS, (10-2$B&L-Q(B-3) 2.00
1.92 3.00
2.84 2.00
1.87 9.00
9.18 9.00
9.39
SEP(10-2$B&L-Q(B-3)
0.109
0.202
0.156
0.157
0.252
$B-:(B.$B!!J8!!8%(B
1) W.J.Dunn,III, S.Wold, J.Edlund, S.Hellberg, and J.Gasteiger, Quant.Struct.Act.
Relat.,3,131 (1984).
2) K.R.Beebe, and B.R.Kowalski, Anal.Chem. 59,1007A (1987).
3) H.Martens and T.Naes, "Multivariate Calibration", John Wiley & Sons, p.98
(1989).
4) $B5\2
5) $B>>2<=(Da(B, $BBg5$1x@w8&5f(B, 10,723 (1976).
6) K.Ogan, E.Katz, W.Skavin, Anal. Chem., 51,1315 (1979).
7) E.R.Malinowski,"Factor Analysis in Chemistry", 2nd ed., John Wiley & Sons,
p.98 (1991).
8) P.Geladi, and B.R.Kowalski,
Anal.Chim. Acta., 185,1 (1986).
9) A.Lober, L.E.Wangen, and B.R.Kowalski, J.Chemom., 1,19 (1987).
10) R.Manne, Chemom.Intell.Lab.Syst. 2,187 (1987).
11) D.M.Haaland, and E.V.Thomas,"Partial Least-Squares Method for Spectral
Analysis. 1. Relation to Other Quantitative Calibration Methods and the
Extraction of Qualitative Information", Anal.Chem., 60,1193 (1988).
12) D.W.Osten, "Selection of Optimal Regression Models via Cross-Validation",
J.Chemometrics, 2,39 (1988).
13) W.H.Press, B.P.Flanny, S.A.Teukolsky, and W.T.Vetterling,"Numerical Recipes",
Cambridge University Press, p.52 (1986).
14) H.Wold, "Partial Least Squares", in S.Katz and N.L.Johnson, ed.,
Encyclopedia of Statistic Sciences, Vol.6, Wiley,New York, p.581 (1985).
15) S.Weisberg, "Applied Linear Regression",Chapter 5, John Wiley & Sons, New
York (1982).
16) R.D.Cook, and S.Weisverg, "Residuals and Influence in Regression", Chapter2
John Wiley & Sons, New York (1982).
17) $BAjEgoDO:!$%1%b%a%H%j%C%/%9!$(B3,4,7$B>O!$4]A1(B (1992).
Return