$B#U#B#A#S#I#C$N2=3X7W;;$X$N1~MQ(B

$B@.BtK'CK!"5\A0M:0l(B


Return

$B-5!%=o8@(B

$B!!#U#B#A#S#I#C$N2=3X7W;;$X$N1~MQ$K$D$$$F=R$Y$k!##U#B#A#S#I#C$OLZEDM4;J(B$B#1(B$B!K$K$h$C$F3+H/$5$l$?!"5pBg@0?t7W;;$N$?$a$NB?G\D97W;;MQ#B#A#S#I#C$G!"#2#6#0#07e$N@0?t7W;;$*$h$S$K@0?tO@$N$?$a$N4X?t$dJ#AG?t$r%5%]!<%H$7$?=iEy4X?t$b07$($k$N$G!"?t3X$NJ,Ln$G$O $B!!2=3X7W;;$K$*$$$F$O8=:_:G$b9-$/MxMQ$5$l$F$$$k8@8l$O#F#O#R#T#R#A#N$G$"$j!"$=$l$KBe$o$k8@8l$O$^$@3+H/$5$l$F$$$J$$!#$o$l$o$l$O#U#B#A#S#I#C$r#F#O#R#T#R#A#N$KBe$o$k$b$N$H$7$FDs0F$7$h$&$H$$$&9M$($G$O$J$/!"8DJL$N7W;;$GHs>o$K9b@:EY$rI,MW$H$9$k>l9g$K!"#U#B#A#S#I#C$,BgJQ$K0RNO$rH/4x$9$k$3$H$r$$$/$D$+$N7W;;Nc$K$h$C$F<($=$&$H;W$&!#(B
$B!!#U#B#A#S#I#C$O%Q%=%3%s$G#2#5#0#07e$N&P$N7W;;$r$o$:$+#6IC$G.#2>h6a;w$G$"$m$&!#Nc$($PB?9`<06a;w$K$h$j:G>.#2>h$r9T$J$*$&$H$9$k$HB?9`<0$N%Y%-$KAjEv$9$ke$2$l$P0lHL$K@:EY$ONI$/$J$k$H9M$($i$l$k$,!"KDBg$J7W;;$N$?$a7W;;8m:9$,Bg$-$/$J$j!"5U$K@:EY$O2<$,$k!#$7$+$7$3$l$^$G$=$N$h$&$J7W;;8m:9$r8!>Z$9$k9b@:EY1i;;%=%U%H$,$J$/!"2=3X$NJ,Ln$G7OE}E*$J8!F$$,9T$o$l$F$3$J$+$C$?!#K\O@J8$G$O:G>.#2>h6a;w$N7W;;8m:9$r8!F$$9$k$?$a$K#B#A#S#I#C!"#F#O#R#T#R#A#N5Z$S#U#B#A#S#I#C$N%W%m%0%i%`$r:n@.$7!"1i;;8m:9$K$D$$$FO@$8$k!#(B

$B-6!%=xO@(B

$B!!Cx$B#2(B$B!K$NO@J8$G!"#B#A#S#I#C$K$h$kB?9`<06a;w$N7W;;$r9T$C$?!#?e$NL)EY$N29EY0MB8$O#4!n$G(B0.999973$B$N:GBgCM$r.$5$$B?9`<0$G6a;w$G$-!"$J$*$+$DM-8z7e?t$b>.?tE@0J2<#77eDxEY$G$"$k$?$aEv;~$N#8%S%C%H%Q%=%3%s$GB.EY!"@:EY$H$b=.#2>h6a;w$9$k$?$a$K$O!"B.EY!"@:EY$H$b9bEY$J$b$N$,MW5a$5$l!"0l5s$K#3#2%S%C%H%Q%=%3%s$K$h$k9b@:EY7W;;$,I,MW$H$J$k$,!"9b8@8l$K$h$k7W;;7k2L$HHf3S$7!"$=$NM-MQ@-$K$D$$$FO@$8$?$$!#(B

$B-7!%M}O@(B

$B#1!%:G>.#2>hK!(B$B#3(B$B!K!$(B$B#4(B$B!K(B
$B!!:G>.#2>h6a;w$O6h4V!J#a!$#b!K$GM?$($i$l$?4X?t#g!J#x!K$KBP$7$F!"E,Ev$J>r7o$rK~B-$9$k4X?t$NCf$+$i!"#2>h8m:9(B

$B$r:G>.$K$9$k#f!J#x!K$rA*Dj$9$kJ}K!$G$"$k!#(B
$B!!6h4V!J#a!$#b!K$GDj5A$5$l$?4X?t#g!J#x!K$,$=$N6h4VFb$K;XDj$5$l$?A*E@(B$B$H!"$=$N>e$NCM(B$B$H$N$_$K$h$C$FM?$($i$l$F$$$k>l9g!"E,Ev$J>r7o$rK~B-$9$k$"$kHO0O$N4X?t$+$i#f!J#x!K$rA*$s$G!"#2>h8m:9(B

$B$r:G>.$K$9$l$P$h$$!#(B
$B!!#f!J#x!K$,$"$k4{CN4X?t7O!P#f#k!J#x!K!Q$N#1
$B$GM?$($i$l$k>l9g$K$O!"#2>h8m:9#E$r:G>.$K$9$k>r7oJ}Dx<0$O(B

$B$G$"$k!#(B

$B#2!%#G#a#u#s#s$N>C5nK!(B$B#5(B$B!K!$(B$B#6(B$B!K!$(B$B#7(B$B!K(B
$B!!0lHL$K#n85O"N)#1
$B$r2r$/$K$O!"(B(2-1)$B$NN>JU$r#a#1#1$G3d$k!#(B

$B$?$@$7!!#a#1#2(B'$B!a#a#1#2!?#a#1#1(B ,$B#a#1#n(B'$B!a#a#1#n!?#a#1#1(B ,$B#b#1(B'$B!a#b#1!?#a#1#1(B $B$G$"$k!#$3$l$K#a#2#1$r3]$1$F(B(2-2)$B$+$i0z$/!#(B

$B$?$@$7!!(B
$B!!!!!!!!(B$B$G$"$k!#0J2
$B$^$G$r:n$k!#0lHL$K(B $B#a#i#j(B' $B$*$h$S(B $B#b#i(B' $B$N7W;;<0$O(B

$B$G$"$k!#(B
$B$3$l$G#x#1$,>C5n$5$l$?!#!!!!!!!!!!!!!!!!!!!!(B $B>C5n$NBh#1CJ(B
$B$B$=$N:]$N78?t$N7W;;<0$O(B

$B$G$"$k!J#j!a#2!$!&!&!&!&!$#n!!!$$^$?#i!a#3!$!&!&!&!&!$#n!K!#$3$l$G#x#2$,>C5n$5$l$k!#(B
$B!!!!(B $B!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(B$B>C5n$NBh#2CJ(B
$B$"$H$OF1MM$K$7$FBh#kCJ$N7W;;$O
$B$?$@$71&8*$N!J#k!]#1!K$O!VBh#k!]#1CJ$N7k2L!W$rI=$9!#$3$N$h$&$J=hM}$r(B $B#k!a#n!]#1$^$GC5n$5$l$F!"#x#n$@$1$rL$CN?t$H$9$kJ}Dx<0$,$G$-$k!#(B

$B$=$7$FF@$i$l$?7k2L$r=g$KA0$N<0$KBeF~$7$F$$$1$P!";D$j$NL$CN?t$,A4It5a$^$k!#(B

$B#3!%6J@~$N$"$F$O$a(B$B#8(B$B!K(B
$B!!N%;6E*$JE@$GM?$($i$l$?%G!<%?$K3j$i$+$J6J@~$r$"$F$O$a$k$3$H$r9M$($k!#%G!<%?$O(B

$B$H$7!"$3$l$+$i6a;w<0(B $B#y!a#f!J#x!K(B $B$r:n$k$3$H$,L\E*$G$"$k!#0lHL$K#n8D$N%Q%i%a!<%?$r4^$`4X?t(B $B#f!J#x!$#p#1!$#p#2!$!&!&!&!&!$#p#n!K$r:n$j(B

$B$K$J$k$h$&$K(B $B#p#1!$#p#2!$!&!&!&!&!$#p#n$rDj$a$k$N$,#1$D$N2rEz$G$"$k!#$3$3$G$O5DO@$r4JC1$K$9$k$?$a$K!"#f$,#p#1!$#p#2!$!&!&!&!&!$#p#n$K4X$7$F@~7A#1
$B$GI=$5$l$k$H$9$k!##U#B#A#S#I#C$K$h$k?tCM7W;;$N1i;;@:EY$rO@$:$k$N$GJ#;($JHs@~7A%b%G%k$O9MN8$7$J$$!#$3$N$h$&$K$9$l$P(B(3-2)$B$O(B

$B$H$$$&O"N)#1 $B!!/$J$/$7$F!"(B(3-2)$B$NBe$o$j$K(B

$B$,:G>.$H$$$&>r7o$G%Q%i%a!<%?!<$r7h$a$kJ}$,!"<+A3$J7k2L$,F@$i$l$k!#<0(B(3-5)$B$rK~$?$9(B $B#p#1!$!&!&!&!&!$#p#n$r5a$a$k$K$O(B

$B$rO"N)J}Dx<0$H$7$F2r$1$PNI$$!##f!J#x!K$,<0(B(3-3)$B$N7A$N>l9g$K$O!"$3$l$O(B

$B$?$@$7(B

$B$H$J$k!#<0(B(3-7)$B$O@55,J}Dx<0$H8F$P$l$k!#(B

$B-8!%7W;;(B

$B!!7W;;$KMQ$$$?#B#A#S#I#C5Z$S#F#O#R#T#R#A#N$N%W%m%0%i%`$O?e$NL)EY$r5a$a$kB?9`<06a;w$N7W;;$KMQ$$$?$b$N#2!K$r0lIt=$@5$7$FMQ$$$?!##B#A#S#I#C$O9b@:EY1i;;$r!"#F#O#R#T#R#A#N$O#M#S!]#F#O#R#T#R#A#N$GG\@:EY1i;;!"#S#u#n!]#F#O#R#T#R#A#N$G#4G\@:EY1i;;$r9T$C$?!##U#B#A#S#I#C$O#B#A#S#I#C%W%m%0%i%`$r2~NI$7$FMQ$$$?!#(B
$B!!#0!n$+$i#3#0!%#5!n$^$G(B 0.5$B!n9o$_$N?e$NL)EY%G!<%?(B$B#9(B$B!K$rMQ$$#B#A#S#I#C!"#F#O#R#T#R#A#N5Z$S#U#B#A#S#I#C%W%m%0%i%`$K$h$k3FhOB$r5a$a$?!#MQ$$$?%Q%=%3%s$O1i;;%3%W%m%;%C%5!<$rFbB"$7$?#N#E#C!!#P#C#9#8#0#1#R#A5Z$S#P#C#9#8#0#1#F#A$G$"$j!"$^$?#F#O#R#T#R#A#N7W;;$O#M#S!]#F#O#R#T#R#A#N!!#V#e#r!%#5!%#15Z$S#S#u#n(B $B#F#O#R#T#R#A#N(B $B#1!%#4$rMQ$$$F%3%s%Q%$%k5Z$S%j%s%/$r$7$F9T$J$C$?!#(B

$B-9!%7k2L$H9M;!(B

$B!!#B#A#S#I#C!"#F#O#R#T#R#A#N5Z$S#U#B#A#S#I#C%W%m%0%i%`$K$h$k3FhOB$r7W;;$7$?!##0!n$+$i#3#0!%#5!n$^$G$N?e$NL)EY$OJQ2=$,>.$5$/!"#5 $B!!!!!!!!#Y(B $B!a(B 0.80$B#y(B $B!\(B sin $B#x(B $B!_(B 0.0003 $B!\(B 0.199 ($B#A(B)

$B$r7W;;$7$F!"?e$NL)EY$N%G!<%?$HF1MM$K#x$NCM$,#0$+$i#3#0!%#5$^$G(B 0.5$B9o$_$G#6#2%v$N%G!<%?E@$r;}$D%G!<%?%U%!%$%k$r:n@.$7!"#x$H#Y$N4X786J@~$K:G$b$h$/$"$F$O$^$kB?9`<06a;w$r9T$C$?!#3F%W%m%0%i%`$K$h$k?e$NL)EY%G!<%?$*$h$S(B($B#A(B)$B<0$N%G!<%?$K$D$$$F$N8m:9$N#2>hOB$r7W;;$7!"7k2L$r(B Table$B#1(B$B$*$h$S(B$B#2(B$B$K<($9!#$?$@$7#B#A#S#I#C$N7W;;$O#S#u#n!]#F#O#R#T#R#A#N5Z$S#U#B#A#S#I#C$N$b$N$H#1#2e$N7W;;$O $B!!#U#B#A#S#I#C$K$D$$$F(B($B#A(B)$B<0$N%G!<%?$r#1#0u67$r(BFig.$B#1(B$B$K<($9!##1#0 Table $B#1(B$B$N#F#O#R#T#R#A#N5Z$S#U#B#A#S#I#C$N8m:9$N#2>hOB$rFig.2(a)$B$K!"!J#A!K<0$KBP$9$k7k2L$r(BFig.2(b)$B$K<($9!#(BFig.2(a) $B$N7k2L$,<($9DL$j!"Hf3SE*Dcl9g$O3F%W%m%0%i%`$K$h$k:9$O82Cx$K8=$l$J$$!#$?$@$7#M#S!]#F#O#R#T#R#A#N$N>l9g$O#3#0Fig.2(b) $B$N7k2L$O#M#S!]#F#O#R#T#R#A#N$b#U#B#A#S#I#C$d#S#u#n!]#F#O#R#T#R#A#N$HF1$8$/#1#1/$7$J$$$7!"%P%i%D%-$,$R$I$$!#$3$l$O#M#S!]#F#O#R#T#R#A#N$,(BDOUBLE PRECISION$B7?$N7W;;$r$9$k$?$a$K!"@:EYE*$KE,$5$J$$$3$H$r<($9!#$J$*(B($B#A(B)$B<0$N%G!<%?$K$D$$$F#U#B#A#S#I#C5Z$S#S#u#n!]#F#O#R#T#R#A#N$N8m:9$N%+!<%V$OC1D48:>/$G$O$J$/!"3,CJ>u$K$J$C$?$,!"%G!<%?$,J#;($K$J$C$?$?$a:GE,2=$9$k$N$K$h$j9b $B!!$J$*(BFig.2(a)$B5Z$S(B(b)$B$N#M#S!]#F#O#R#T#R#A#N$N8m:9$N#2>hOB$,#3#0Aw$7!"%o!<%/%9%F!<%7%g%s>e$G3FhOB$r7W;;$7$?!#$J$*Fig.2$B$+$iL@$+$J$h$&$K!"#M#S!]#F#O#R#T#R#A#N$O(BDOUBLE PRECISION$B7?$G!"@:EY>eLdBj$,$"$C$?$,!"%o!<%/%9%F!<%7%g%s$K$h$k(BQUADRUPLE PRECISION $B$N7W;;$G$O$3$NE@$,2~A1$5$l$?!#=>$C$F!"#M#S!]#F#O#R#T#R#A#N$N7W;;7k2L$K0[>o$,@8$8$k$N$O>e5-#49`$N%W%m%0%i%`$,@5$7$/=q$+$l$F$$$J$$$3$H$G$"$k$H$$$&M}M3$O=|$+$l$k!#$^$?>e5-#1!A#39`$O#1$D$KE;$a$k$3$H$,$G$-!"%Q%=%3%s$K$h$kG\@:EY1i;;$G$O@:EY>eLdBj$,$"$k$3$H$r<($7$F$*$j!"$=$l0J>e860x$rL@$i$+$K$9$k$K$O#M#S!]#F#O#R#T#R#A#N$N7W;;2aDx$r>\:Y$K8!F$$9$kI,MW$,$"$k!#$=$l$O:#2s$N#U#B#A#S#I#C$K4X$9$k@-G=8!::$NLdBj$G$O$J$$$N$G!"$3$l0J>e$N5DO@$O$7$J$$!#(B
$B!!:F$S(BFig.$B#1(B$B$NOC$KLa$C$F!"(BFig.$B#1(B$B$N%0%i%U$O#U#B#A#S#I#C$G7W;;$7$?7k2L$G$O$"$k$,!"(B Table $B#2(B$B$h$j#1e$G$O8+$i$l$J$$!#$7$+$7$J$,$i!"!J#A!K<0$N%G!<%?$G$O#2#0hOB$rM?$($F$$$k$N$O#2#3 $B!!!!!!!!#Y(B $B!a(B 0.80$B#y(B $B!\(B sin $B#2#x(B $B!_(B 0.0003 $B!\(B 0.199 ($B#B(B)

$B$r7W;;$7$F!"!J#A!K<0$N%G!<%?$HF1MM$K#6#2%v$N%G!<%?E@$r;}$D%G!<%?%U%!%$%k$r:n@.$7!"#M#S!]#F#O#R#T#R#A#N!"#S#u#n!]#F#O#R#T#R#A#N!"$*$h$S#U#B#A#S#I#C$N#3hOB$N7W;;$r9T$$!"7k2L$r(BTable $B#3(B$B$K!"$^$?$3$l$i$NFig.3$B$K<($9!#(BFig.3$B$h$jL@$i$+$J$h$&$K!"!J#B!K<0$N%G!<%?$rMQ$$$?>l9g$K$O!"#U#B#A#S#I#C$G7W;;$7$?8m:9$N#2>hOB$O#2#7/$7$F$$$k$,!"#S#u#n!]#F#O#R#T#R#A#N$N7k2L$O$"$?$+$b(BFig.2(b)$B$N#M#S!]#F#O#R#T#R#A#N$N$h$&$J!"8m:9$N#2>hOB$,8:>/$7$J$$%P%i%D%-$N$R$I$$7k2L$H$J$C$?!#(B
$B!!#U#B#A#S#I#C$K$D$$$F!J#B!K<0$N%G!<%?$r#2#0u67$r(BFig.4$B$K<($9!#!J#B!K<0$N%G!<%?$G$O!"#2#0Fig.4$B$N#2#0 $B!!=>Mh!"8m:9$N#2>hOB$r7W;;$7$FI>2A$r$9$k$?$a$N9b@:EY7W;;%W%m%0%i%`$,$J$+$C$?$N$G!"7k2L$rHf3S$9$k$3$H$,$G$-$J$+$C$?$,!":#2s#U#B#A#S#I#C$rMQ$$$F!"9-$/;H$o$l$F$$$k4pK\E*$J8@8l$N7W;;@:EY$rO@$8$k$3$H$,$G$-$?!#(B

Table 1 $B?e$NL)EY%G!<%?;HMQ;~$N8m:9$N#2>hOB(B

Table 2 $B!J#A!K<0$K$h$k%G!<%?;HMQ;~$N8m:9$N#2>hOB(B

Table 3 $B!J#B!K<0$K$h$k%G!<%?;HMQ;~$N8m:9$N#2>hOB(B


Fig.1. Simulation curves with UBASIC program
:data points calculated from equation(A) (see text);
:dotted lines are simulation curves calculated with
10th and 20th dimension.


Fig.4. Simulation curves with UBASIC program
:data points calculated from equation(B) (see text);
:dotted lines are simulation curves calculated with 20th and 35th dimension.

REFERENCES

1) $BLZEDM4;J(B, "$B#U#B#A#S#I#C#8#6(B Ver8.1 $B%f!<%6!<%:%^%K%e%"%k(B", $BF|K\I>O@ 2) $B@._7K'CK!&CfG8K.IW(B, $BJ,@O2=3X(B, 32, T25 (1982).
3) $B?t3X%O%s%I%V%C%/JT=80Q0w2qJT(B, "$BM}9)3X$N$?$a$N?t3X%O%s%I%V%C%/(B", p.326, $B4]A1(B (1960).
4) $B0l>>(B $B?.!&C]G7Fbf{JT(B, "$B2~D{A}Jd?7?t3X;vE5(B", $BA}Jd(Bp.41, $BBg:e=q@R(B (1979).
5) $B8M@nH;?MCx(B, "$B7W;;5!$N$?$a$N?tCM7W;;(B", p.18, $B%5%$%(%s%9 6) $B8M@nH;?MCx(B, "$B#B#A#S#I#C$K$h$k@~7ABe?t(B", p.46, $B6&N)=PHG(B (1985).
7) $BLpLn7rB@O:4F=$!$5\K\IRM:LuJT(B, "$B?t3X%O%s%I%V%C%/(B", p.834, $B?9KL=PHG(B (1985).
$B!J(BI.N.$B%V%m%7%e%F%$%s!&(BK.A.$B%;%a%s%8%c!<%(%U86Cx!"(BG.$B%0%m%C%7%'!&(BV.$B%D%#!<%0%i!
8) Ref. 5, p.39.
9) K. Sch fer, G. Beggerow, "Landolt-B rnstein", 6Aufl, $B-6(BBand, 1Tl, s.36(1971),
$B!!(B(Springer Verlag, Berlin%Heidelberg%New York).

Return